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Abstract-Crack-growth resistance in transformation-toughened ceramics is studied by modeling
the region surrounding an advancing crack tip as a zone which has undergone a uniform dilatational
phase transformation. This zone is allowed to evolve around the advancing crack tip under con­
ditions of increasing far-ficld load while the lip is maintained at a critical stress intensity necessary
for fracture. This pHlcedure leads to the surprising conclusion that ma~imum toughening occurs
for finite amounts of crack advance.

INTRODUCTION

The discovery of enhanced fracture toughness in zirconia-enriched ceramics has kd to a
tlurry of experimental and theoretical analyses. It has been well established that the high
stresses near a crack tip can cause small zirconia particles. typically I Jim or kss in diameter.
to undergo a phase transformation from a tetragonal to a monoclinic crystal structure. The
unconstrained transformation can be decomposed into a 4'Y.. dilatation and a 16°1., shear
strain. However. due to the clastic constraint of the matrix phase. the particks in the
composite generally transform with twin bands of alternate character resulting in an overall
transformation strain considerably less than 16% . Consequently. the strain transformation
of particles embedtkd in the composite is usually assumed to be dilatant.

The transformed region has the remarkable property of allowing stable crack growth
to occur in the composite material. whereas the unreinforced ceramic exhibits no such
hehavior. Stabk crack growth on the order of several millimeters has been observed. and
R-curves (i.e. stress intensity versus crack extension) for a variety of zirconia-reinforced
composites have been measured.

Theoretical studies of transformation toughening including those of McMeeking and
Evans (llJ~Q). Budiansky et al. (llJX3). Amazigo and Budiansky (1988). Rose (llJ86a) and
Lamhropoulos (I lJX6) have considered only steady-state toughening. wherein a semi-infinite
planar crack is surrounded by a semi-infinite zone of dilatation. as shown in Fig. I(a).
Using a primitive analysis. Rose (llJ86b) also examined the ellect of allowing an initial
transformation zone to grow with an advancing crack tip. The objective of this study is to
present a compkte analysis of the growing crack by solving for the initial transformation
zone and studying its growth around a crack tip advancing under increasing. far fidd.
Mode-I loading. This analysis will reveal the surprising result that maximum toughening
occurs for a finite amount of crack advance.

INITIAL ZONES

The modding approach adopted in this study. consistent with previous work. is to
assume that a transformation zone surrounding the initial crack tip has undergone an
irreversible transformation dilatation of strength cO:'. as shown in Fig. I(b). where c is the
zirconia particle volume fraction and OJ is the unconstr'lined particle dilatation. The crack
will be taken to be semi-infinite and planar. The transformed and untransformed regions
will be assumed to have the same clastic moduli. and to be under plane strain.

Since typical zone sizes are of the order of 20 Jim or less. small compared to specimen
dimensions. the small scale zone-size approximation will be invoked. The stresses at dis­
tances far from the zone. but small compared to the size of the body. will be assumed to
be dominated by the classic Mode I K-ficld. For r -> 00. the stresses (1'ff are given by

fiJ5
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Fig. I. (a) Steady-state trans/\lrlllation wne surrounding a crack tip; (h) initial transformation
wne around a stationary crack.

( I )

where the f: p( (p) arc well known trigonometric functions and K is the applied far-field stress
intensity. Similarly, in the vicinity of the erack tip, r -. 0, the stresses are given by

(2)

where Kill' is the stress intensity at the crack tip.
The full transformation will be assumed to occur when the mean stress, (jilt = (jkk/3.

attains a critical value (j~" This corresponds to the "supercritical" transformation case
considered by Budiansky el at. (1983). The value of (j:;', as discussed by Evans and Cannon
(1986), will depend on the stress and temperature history of the composite. Other trans­
formation criteria have also been proposed (Lambropoulos. 1986).

As shown by Budiansky et at., the application of the j-integral to the stationary crack
results in the conclusion that Kill' = K. Accordingly, if crack growth occurs at a critical
intensity, Ktil' = K"" where K", is independent of the particle concentration, the initial
transformation region induces no toughening. This neglects the possible effects of other
toughening mechanisms such as microcracking.

To determine the boundary of the initial transformation zone (Fig. I(b», it is necessary
to insist that the mean stress (jilt attain the value (j:;' as the boundary is approached from
the exterior of the zone. By the superposition of stresses. the mean stress exterior to the
zone boundary is the sum of contributions from the applied far-field and from dilatations
in the transformed region.

The mean stress due to the far-field stresses of eqn (I) is
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(3)

The mean stress contribution of the transformed zone can be found by first considering
that due to the two small circular spots of dilatation shown in Fig. 2. For spots of area
dA". strength cO;. and located at =" = x,,+(l'o and =" = xo-(I'", the mean stress as found
by Hutchinson (1974) is

(4)

The spots at =" and =" induce a change in tip stress intensity

Rewriting eqn (5) in terms of polar coordinates rand IP. yields the equivalent form,

. Ec(),:'
I1K"p = ---------. r -J! cos (31P/2) dA".3J (2rrH I - \.)

(5)

(6)

Transformations in the region (P < rr/3 increase K"p. while those in the region ¢ > rr/3
decrease K"p.

The effect of the entire zone on the mean stress can be calculated by integrating eqn
(4) over the upper half A of the transformed zone (Fig. I(b». The equation for the zone
boundary is then obtained by adding the far field mean stress to the zone contribution and
equating the sum to IT;;,. Thus. the equation governing points == R(I/J) e'''' on the boundary
IS

, = K(I +v) (rrR)
IT,,, 3 2 (7)

where F(=.=u) is given by eqn (4).
Carrying out the integration with respect to dxo and setting K = K,.. \cads

following condition governing R(¢) when crack growth is imminent:

where

to the

(8)
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(9)

Ikn: the paramdcr (I). ddil1l:d hy

(j) = !!:X: [I + I']
rr", I - v

( 10)

is a non-dimensional measure of the strength of the transformation. and the characteristic
length L is

- 2 [K",( I + \')J~L - -- ---- ._-
9rr 11;"

(II)

Note that L is the frontal intercept at tf> = 0 of the rr:;, boundary for W = O.
The stress intensity at the tip is equal to the sum of the applied stress intensity and

that induced by the presence of the transformation zone. Integrating eqn (5) over upper
half of the zone and adding the applied far-field intensity results in the equation

for Kop • Integrating with respect to dx" results in the equation

K"p K 2Wf"(R) I~.. dy,,(t/J)= 1· - (l l COs ((/>/2) L'-
A"'", l\.", ';In: lJ oJ

( 12)

( 13)

But. for the initial crack. K.,p = K. and for crack growth to occur K.,p = Km . Hence. eqn
(13) with Kop!K", = KI K", = I serves as a check on the solution of (8) forthe initial boundary
curve R(e/J).

The procedure used to solve eqn (8) for R(e/J)/L is described in Appendix A and the
results for various values of (t) ranging from 0 to 30 are shown in Fig. 3. The effect of
increased (!) on the relative shapes of the zones can he seen in Fig. 4. where for each wall
distances have been normalized by the frontal intercept R(O).
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Figure 5 shows the initial zone-heights of Fig. 3, together with the zone-heights
corresponding to steady-state crack growth calculated by Amazigo and Budiansky (1988).
For (j) ~ 30, the steady state zone height becomes infinite, corresponding to the "lock­
up" -i.e. infinite toughening -discovered by Rose (1986b).

GROWING CRACKS

Once the initial zone has been found, it is possible to contemplate its growth around
an advancing crack tip. As a growing crack moves into the body. material in the vicinity
of the tip attains the critical mean stress and transforms, while due to the irreversibility of
the transformation a wake region is left behind. Along a frontal portion of the transformed
zone-boundary the mean stress criterion is satisfied, while on the wake portion of the
boundary the mean stress will have dropped below 11;;,. According to eqn (6) material in
the transformed region which lies to the left of the radial line running through the tip at
the angle Tt/3 reduces the stress intensity at the tip. To continue driving the crack forward.
the applied stress intensity must be incremented. Consequently to solve the growing crack
problem, both the stress intensity and zone shape must be found as functions of crack
extension.

The upper half of the instantaneous zone around a growing crack is shown in Fig.
6(a). The boundary is modeled by three segments; active, passive. and residual. The active
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segllH:nt AB is the portion of the houndary where the mean strcss has just reached IT;". The
mean stress on the rem:,inder or the houndary has dropped hdow IT;". The residual segmcnt
CD is the p(lrti(ln (If the initial houndary Id't hchind with thc lirst incrcment of crack
growth. Thc intcrllH:dialc passivc portion Be is a growth dcpcndcnt piccc connccting thc
:Ictive and residual scgmcnts. Thc passive portion is c(lmpriscd cntirdy of thc end points B
of previous active scgmcnts. scveral of which arc shown in thc sketch.

The solution or thc growing crack prohkm involvcs adapting thc thrce segmcnt approach
to a scrics of linitc crack incremcnts. In the limit of continuous crack advance. the passiw
segment provides a smooth connection from the residual portion of the instantaneous active
segment. However f(lr a series of finite crack increments. a piecewise linear approximation
to the passive zone can he constructed hy connecting the residual segment to the currently
active segment with a series of straight lines running through the end points of previous
active pieces. In the limit of infinitesimal crack increments the approximate boundary
should coincide with the actual passive segment.

The setup for a typical growth increment /:1£1 is shown in Fig. 6(b). The active segment
AB is descrihed with respect to moving crack tip coordinates rand (P, where (P is assumed
to span the angular inkrval from 0 to an unknown angle :I.. For the growth innernent !1a
the passive segment extension is modeled by using a straight line to connect the end of the
instantaneous active segment. B. to B'. the end of the previous active segment. Tangency
between the active and passive segnH.:nts ;It B is enforced. For the first crack increment, the
passive segment connection with the initial lOne shape must also be round, As shown in fig.
6(b). the passive residual boundary at Cwill be described by the unknown angle {J, measured
with respect to the initial crack position. Tangency between the residual and passive
segments will also be enforced at point C.

The analysis presented for the initial crack problem can be applied to the growing
crack configuration with some slight modifications, The initial zone will be allowed to grow
with an advancing crack tip under the dual requirements of satisfying the critical mean
stress condition on the active zone boundary and maintaining the tip stress intensity at 1\01'

The mean stress criterion. eqn (7). is enforced with the understanding that the angle
(p is restricted to the interval 0 < (p < :I.. Introducing the nondimensional toughening par­
ameter A = I\'.K",. carrying out the integration with respect to dx ll • and regrouping eqn (7)
results in the expression
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( L)I'~ W 1" dl'o(¢')= A - cos (¢/2)-- M(¢.¢')·-·--
R 9rr n L

( 14)

governing the active zone boundary R«(P>!L. All distances in cqn (14) are measured from
the crack tip and the integration extends over the entire boundary 0 < ¢' < rr.

The tip stress-in tensity-factor can be maintained at K", by enforcing eqn (13), which
now requires

2w I"(R)'I~ . dYn(c/»
A = 1+ 9rr Jo i cos (cP;2) --i..'-. ( 15)

The system (14) and (15) constitutes a nonlinear integral equation and a scalar equation
for R(c/»/L and A. For the initial crack increment. eqns (14). (15) and tangency conditions
at ~ and (f. can be solved for R(cP)/Lin (0 < (P < IX). A. 1: and {f. For a series of subsequent
crack increments R(¢)/L. A. and IX are found repeatedly to generate the zone shape and
the crack-growth resistance. The solution procedure for each crack increment is outlined
in Appendix B.

Growing zone shapes for (J) = 5 and 10 are shown in Fig. 7. The dashed curves indicate
the positions of active segments for various amounts of crack extension; the innermost
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curve is the initial boundary. The R-curves, plots of A versus tio/ L, for w = 5, 10 along with
their respective steady-state toughening asymptotes, as found by Amazigo and Budiansky
(19SH), are shown in Fig. S. The results of Figs 7 and S are quite unexpected. The zone
height H! L and the toughening A both overshoot their steady-state levels for finite amounts
of crack advance before approaching them asymptotically from above.

The R-curves of Fig. 8 are qualitatively consistent with some available experimental
measurements. A number of investigators, including Swain (1983), and Swain and Hannink
(1984), have reported R-curves which exhibit peaks in toughness. However, the cor­
responding peak in zone height has not been reported. Even though the actual zone
boundary between transformed and untransformed regions occurs over a diffuse region,
the issue of zone widening should be explored experimentally.

R-curves and transformation-zones have been calculated for various values of w, and
the results for the peak toughening A" and peak zone height H" arc shown in Table I. Also
shown arc the non-dimensional crack extensions tia(A,,)! Land tia( II,,)!L at which A and
II, respectively. are maximized. Both A" and H" are seen to increase dramatically in the
interval 19 < (r) < 20. Denoting the steady state toughening ratio K.! K",. as calculated by
Amazigo and Budiansky (1988) by A" we compare the toughening predictions for the
steady state and growing crack calculations in Fig. 9. which shows (A,) - I and (AI') - I versus
w. The implication for a growing crack is "lockup" for (t) greater than 20.2. The steady-
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Table 1.

w A, H"L &l(A,lL &l(H,l L

5 1.29 1.03 5.5 2A
10 1.80 1.91 10.25 5.6
15 3.07 5.17 29~ 18.~

17.5 5.06 13.6 81.0 55.0
19.5 16.3 351 2400 1875
20.0 7~.3 2764 20.200 15.900

1.0

1\-1

a. S

0.0
a 5 10 IS 20 2S 30

ro:~[~]
o~ 1-"

Fig. 9. Reciprocal of peak and steady-slate toughening versus w.
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Fig. 10. Initial crack-growth resistance versus w.

o

state configuration (Fig. I(a» cannot be reached from the growth of an initial zone for
w> 20.2.

It may be noted from Fig. 8 that a tiny secondary maximum appears in the R-curve
for OJ = 10. For values of OJ greater than 10 (but less than 20.2) additional peaks of
decreasing amplitude were found to appear in the R-curves as the toughness decayed in an
oscillatory fashion to its steady-state magnitude.

By considering the initial slope of the R-curves, it is possible to define an initial tearing
resistance parameter
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( 16)

Here t represents the rate of toughening increase ,IS the crack hegins its initial growth
and is plotted versus w in Fig. 10. A comparison can he made with the approximate results
of Hutchinson (19~6) who neglected the ellcet of the transformation on the zone boundary
in his study of initi'll tearing resistance. Figure II shows a comparison of both sets of
calculations for small w. In the limit (J) -. 0, the predictions coincide.

CONCLUDING REMARKS

In the presence of transforming particles. the resistance to craek growth, as measured
hy the applied stress intensity K. reaches a maximum at a finite amount of crack growth.
This maximum exceeds the steady-state toughness by an amount that varies with the
transformation intensity parameter UJ. Furthermore, "lock-up" (Le. infinite toughening).
occurs at a critical value of w =:: 20.2, which is substantially smaller than the value w = 30
corresponding to steady-statc toughening. Thc potential benefits of transformation tough­
ening must be assessed on the basis oftransiellt crack growth since the steady-state condition
seriously underestim'ltes the toughening ell"t.'Ct of transforming particles.
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APPENDIX A

The initial zone boundary. R(,p>. can be found by solving the nonlinear integral equation (8). However before
proceeding. it is instructive to e~amine the solution for w = 0 given by eqn (3) and shown in Fig. 3:

R(IM = L[li~+ li~ cos (,p)I. (AI)

Due to Mode-( symmetry. the boundary at,p = 0 intersects the a~is ahead of the tip normally. However. at IP = Il.
the houndary runs through the crack tip tangentially to the crack face.

F,'r Uj "!- 0, the possihility that the houndary at IP = Il det'lches from the crack tip must be admitted. An
analysis of the inkgral in eqn (8) shows that if R(Il) "!- n. the b,'undary intersects the crack faces normally. An
e~pansion for R(IM meeting the houndary rcquircments at (} ,ll1d Il is

.V

{«1M ~ L a. cos (n'M·
,,_II

Suhstitution (If eqn (/\2) allows eqn (8) to he rewritten in the form

(;(0 0 .(/, •••• ,II". 1M -I :, I)

(A2)

(A3)

where the function (; is the right-hand Side of eqn (8).

In thIS stndy. the solution for the (S -I- I) unknown coellicients was accomplished hy cullocating eqn (A3) at
:v ~ I equally spaced points, IP .~ Iln: (.v + I) whl're n ; (I). 1.2.... , N), in the interval 0 < 'P < Il. A Newton
Ibl'hson iterative technique was then used to solve for the N + I unknown coellieients. The integral in eqn (A3)
was ev;duated hy (iaussian quadrature. Convergence was assumed when the relative change in successive iterations
of each of the unknuwns was less than 0.00 I. For the initial LUnes shown in Fig. 3. it was found that a to-term
c~pansilln waS sullicient to ohtain a highly accurate solution. As an additional ch,:ck on the accuracy of the over.dl
shape. the wnstraint on R( 1M!L, elln (13) with Ko,,!K = I. was evaluated and found to hold to within W 'for
each of the wnes or Fig. 3.

APPENDIX B

The solution for the unknowns R(IM, 7. and A after a typical crack increment (Fig. 6(h)} involves solving
the integral equatioll «(.J), the scalar eljuation (IS), and meeting the tangency condition

(HI)

For the initial crack increment the system mllst he supplemented with the unknown II and the additional tangency
eljuatiun

(B2)

An appropriate e~pallsi()n for the radius of the instantaneous active segment which meets Mode-I symmetry
cunditiuns is

.V

R{tP} = L a. T :,,{,plx)
.... 0

(B3)

where the T:" arc the even Tchehyshev polynomials. Suhstituting this e~pression into (14), (15), and (81) results
in a set ofeljuations for the unknowns {(/".a, •.... <1..), x. and A.

The solution procedure will be described for the general growth increment as shown in Fig. 6(0). For the
initial increment. the process is the same with II and (82) added to the list of unknowns and equations. For a
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given &1. a system of.\" + 3 equations was generated by enforcing equations (15). (B I). and collocating eqn (14)
at.\" + I equally spa~'ed points rb = n:x(.V .... I) In = O. I.~ ..... N + I). The equations were written in residual form
and Newton-Raphson method was used to tind the solution. Gaussian quadrature was used to evaluate the
integrals in eqns (141 and (15). ClJnvergence to a solution was specified by a relative change of less than O.lJOI
between iterations.:\ 6-term expansion for R(rP) was found sutficient to obtain a solution at all stages of growth.

Initial growth Increm.:nts had to be small. < 0.05 L. to capture the early zone shape. :\s crack extension
proceed~-d. it was found that the increment sIze could be increased. The number of Increments necessary to grow
the crack to peaks in height and toughening varied gn:atly For small values of (:J less than 50 increments were
sufficient. Howev'er fllr values of w between 17 and ~O. s.:veral hundred increments wer.: necessary to reach H,
and "p' During the growth process. the mean stress ext.:rior to the zone was ch~'Cked to confirm that it was less
than <1:". The tinal results shown haein were checked by calculations with the increment steps halved.


